Dual 4-Input Multiplexer with 3-State Outputs

The MC74AC253/74ACT253 is a dual 4–input multiplexer with 3–state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (\overline{OE}) inputs, allowing the outputs to interface directly with bus oriented systems.

- Multifunctional Capability
- Noninverting 3–State Outputs
- Outputs Source/Sink 24 mA
- 'ACT253 Has TTL Compatible Inputs
- These are Pb-Free Devices

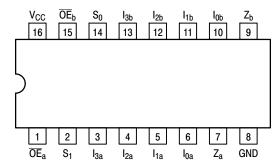
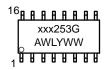


Figure 1. Pinout: 16-Lead Packages Conductors (Top View)

PIN NAME

PIN	FUNCTION				
I _{0a} –I _{3a}	Side A Data Inputs				
I _{0b} –I _{3b}	Side B Data Inputs				
S ₀ , S ₁	Common Select Inputs				
ŌEa	Side A Output Enable Input				
ŌE _b	Side B Output Enable Input				
$Z_{a,}Z_{b}$	3-State Outputs				


ON Semiconductor™

www.onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

xxx = AC or ACT A = Assembly Location

WL or L = Wafer Lot Y = Year WW or W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

TRUTH TABLE

	Select Inputs		Data Inputs				Outputs
S ₀	S ₁	I ₀	I ₁	l ₂	l ₃	ŌĒ	Z
Х	Χ	Χ	Χ	Χ	Χ	Н	Z
L	L	L	X	X	X	L	L
L	L	Н	X	X	Χ	L	Н
Н	L	X	L	X	Χ	L	L
Н	L	X	Н	X	Χ	L	Н
L	Н	Χ	X	L	Χ	L	L
L	Н	X	Х	Н	Χ	L	Н
Н	Н	X	Х	X	L	L	L
Н	Н	Х	Χ	Х	Н	L	Н

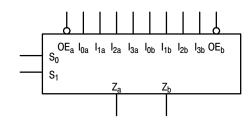


Figure 2. Logic Symbol

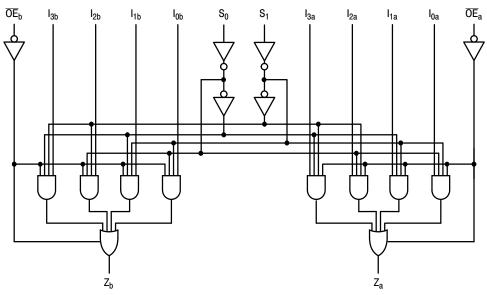
Address inputs S_0 and S_1 are common to both sections.

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Z = High Impedance


FUNCTIONAL DESCRIPTION

The MC74AC253/74ACT253 contains two identical 4–input multiplexers with 3–state outputs. They select two bits from four sources selected by common Select inputs (S_0 , S_1). The 4–input multiplexers have individual Output Enable (\overline{OE}_a , \overline{OE}_b) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2–pole, 4–position switch, where the position of the switch is determined by the logic levels

supplied to the two select inputs. The logic equations for the outputs are shown:

$$\begin{split} Z_{a} &= \overline{OE}_{a} \bullet (I_{0a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet \overline{S}_{1} \bullet S_{0} + I_{2a} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{2a} \bullet \overline{S}_{1} \bullet \overline{S}_{0}) \\ Z_{b} &= \overline{OE}_{b} \bullet (I_{0b} \bullet \overline{S}_{1} \bullet \overline{S}_{0} + I_{1b} \bullet \overline{S}_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0}) \end{split}$$

If the outputs of 3–state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3–state devices whose outputs are tied together are designed so that there is no overlap.

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS

Parameter		Value	Unit
DC Supply Voltage		-0.5 to +7.0	V
DC Input Voltage		$-0.5 \le V_{CC} + 0.5$	V
DC Output Voltage (Note 1)		$-0.5 \le V_{CC} + 0.5$	V
DC Input Diode Current	±20	mA	
DC Output Diode Current	±50	mA	
DC Output Sink/Source Current	±50	mA	
DC Supply Current per Output Pin		±50	mA
DC Ground Current per Output Pin		±50	mA
Storage Temperature Range	-65 to +150	°C	
Lead temperature, 1 mm from Case for 10 Seconds	260	°C	
Junction temperature under Bias		+150	°C
Thermal Resistance (Note 2)	SOIC TSSOP	69.1 103.8	°C/W
Power Dissipation in Still Air at 65°C (Note 3)	SOIC TSSOP	500 500	mW
Moisture Sensitivity		Level 1	
Flammability Rating Oxygen	UL 94 V-0 @ 0.125 in		
Machi	ine Model (Note 5)	> 2000 > 200 > 1000	V
Latch-Up Performance Above V _{CC} and Below GNI	±100	mA	
	DC Supply Voltage DC Input Voltage DC Output Voltage (Note 1) DC Input Diode Current DC Output Diode Current DC Output Sink/Source Current DC Supply Current per Output Pin DC Ground Current per Output Pin Storage Temperature Range Lead temperature, 1 mm from Case for 10 Seconds Junction temperature under Bias Thermal Resistance (Note 2) Power Dissipation in Still Air at 65°C (Note 3) Moisture Sensitivity Flammability Rating Oxygen ESD Withstand Voltage Human Book Maching Charged Devi	DC Supply Voltage DC Input Voltage DC Output Voltage (Note 1) DC Input Diode Current DC Output Diode Current DC Output Sink/Source Current DC Supply Current per Output Pin DC Ground Current per Output Pin Storage Temperature Range Lead temperature, 1 mm from Case for 10 Seconds Junction temperature under Bias Thermal Resistance (Note 2) SOIC TSSOP Power Dissipation in Still Air at 65°C (Note 3) SOIC TSSOP Moisture Sensitivity Flammability Rating Oxygen Index: 30% – 35% ESD Withstand Voltage Human Body Model (Note 4) Machine Model (Note 5) Charged Device Model (Note 6) Latch-Up Performance Above V _{CC} and Below GND at 85°C (Note 7)	DC Supply Voltage $-0.5 \text{ to } +7.0$ DC Input Voltage $-0.5 \leq V_{CC} + 0.5$ DC Output Voltage (Note 1) $-0.5 \leq V_{CC} + 0.5$ DC Input Diode Current ± 20 DC Output Diode Current ± 50 DC Output Sink/Source Current ± 50 DC Supply Current per Output Pin ± 50 DC Ground Current per Output Pin ± 50 Storage Temperature Range $-65 \text{ to } +150$ Lead temperature, 1 mm from Case for 10 Seconds 260 Junction temperature under Bias $+150$ Thermal Resistance (Note 2) $-65 \text{ to } +150$ Thermal Resistance (Note 2) -69.1 TSSOP -69.1 TOUGHAMAN SOURCE -69.1 TSSOP -69.1 TSSOP -60.1 TSSOP $-60.$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Io absolute maximum rating must be observed.
- 2. The package thermal impedance is calculated in accordance with JESD51-7.
- 3. 500 mW at 65°C; derate to 300 mW by 10 mW/ from 65°C to 85°C.
- 4. Tested to EIA/JESD22-A114-A.
- 5. Tested to EIA/JESD22-A115-A.
- 6. Tested to JESD22-C101-A.
- 7. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit				
V	Control o Vella ma	'AC	2.0	5.0	6.0				
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V			
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V			
		V _{CC} @ 3.0 V	-	150	_				
t _r , t _f	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	_	ns/V			
	The Bornood oxeopt Commit inpute	V _{CC} @ 5.5 V	-	25	_				
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	_	no/\/			
t _r , t _f	'ACT Devices except Schmitt Inputs	-	8.0	_	ns/V				
T _A	Operating Ambient Temperature Range	-40	25	85	°C				
I _{OH}	Output Current – High	-	-	-24	mA				
I _{OL}	Output Current – Low	-	_	24	mA				

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- V_{IN} from 30% to 70% V_{CC}; see individual Data Sheets for devices that differ from the typical input rise and fall times.
 V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

			74	AC	74AC			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA	
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟυΤ} = 50 μΑ	
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND	
I _{OZ}	Maximum 3–State Current	5.5	-	±0.5	±5.0	μА	V_{I} (OE) = V_{IL} , V_{IH} V_{I} = V_{CC} , GND V_{O} = V_{CC} , GND	
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	_	- 75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

 $^{^\}star\text{All}$ outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I $_{\rm IN}$ and I $_{\rm CC}$ @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V $_{\rm CC}$.

AC CHARACTERISTICS (For Figures and Waveforms – See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74AC			
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S _n to Z _n	3.3 5.0	2.0 2.0		15.5 11.0	2.0 1.5	17.5 12.5	ns	3–6
t _{PHL}	Propagation Delay S _n to Z _n	3.3 5.0	2.5 2.0	-	16.0 11.5	2.0 1.5	18.0 13.0	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	3.3 5.0	1.5 1.5	-	14.5 10.0	1.5 1.5	17.0 11.5	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	3.3 5.0	2.0 1.5		13.0 9.5	1.5 1.5	15.0 11.0	ns	3–5
t _{PZH}	Output Enable Time	3.3 5.0	1.5 1.5		8.0 6.0	1.0 1.0	8.5 6.5	ns	3–7
t _{PZL}	Output Enable Time	3.3 5.0	1.5 1.5	-	8.0 6.0	1.0 1.0	9.0 7.0	ns	3–8
t _{PHZ}	Output Disable Time	3.3 5.0	2.0 2.0	-	9.5 8.0	1.5 1.5	10.0 8.5	ns	3–7
t _{PLZ}	Output Disable Time	3.3 5.0	1.5 1.5		8.0 7.0	1.0 1.0	9.0 7.5	ns	3–8

^{*}Voltage Range 3.3 V is 3.3 V ± 0.3 V. *Voltage Range 5.0 V is 5.0 V ± 0.5 V.

DC CHARACTERISTICS

			74 <i>A</i>	CT	74ACT			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5	- -	3.86 4.86	3.76 4.76	V	* V _{IN} = V _{IL} or V _{IH} -24 mA I OH -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA	
		4.5 5.5		0.36 0.36	0.44 0.44	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ $^{24} \text{ mA}$ ^{1}OL $^{24} \text{ mA}$	
I _{IN}	Maximum Input Leakage Current	5.5	_	±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	_	1.5	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$	
l _{OZ}	Maximum 3–State Current	5.5	_	±0.5	±5.0	μА	$\begin{aligned} &V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ &V_{I} = V_{CC}, GND \\ &V_{O} = V_{CC}, GND \end{aligned}$	
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5	-	_	-75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND	

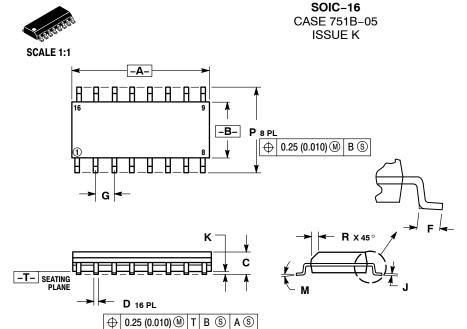
 $^{^\}star All$ outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

			74ACT			74ACT			
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay S_n to Z_n	5.0	2.0	ı	11.5	2.0	13.0	ns	3–6
t _{PHL}	Propagation Delay S_n to Z_n	5.0	3.0	ı	13.0	2.5	14.5	ns	3–6
t _{PLH}	Propagation Delay I_n to Z_n	5.0	2.5	ı	10.0	2.0	11.0	ns	3–5
t _{PHL}	Propagation Delay I_n to Z_n	5.0	3.5	1	11.0	3.0	12.5	ns	3–5
t _{PZH}	Output Enable Time	5.0	2.0	-	7.5	1.5	8.5	ns	3–7
t _{PZL}	Output Enable Time	5.0	2.0	-	8.0	1.5	9.0	ns	3–8
t _{PHZ}	Output Disable Time	5.0	3.0	-	9.5	2.5	10.0	ns	3–7
t _{PLZ}	Output Disable Time	5.0	2.5	_	7.5	2.0	8.5	ns	3–8

^{*} Voltage Range 5.0 V is 5.0 V ± 0.5 V.

CAPACITANCE


Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	50	pF	V _{CC} = 5.0 V

ORDERING INFORMATION

Device Order Number	Package	Shipping [†]
MC74AC253DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74AC253DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74AC253DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel
MC74ACT253DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74ACT253DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74ACT253DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

16. COLLECTOR 16. CATHODE 16. COLLECTOR, #4 16. EMITTER, #1 STYLE 5: STYLE 6: STYLE 7: PIN 1. DRAIN, DYE #1 PIN 1. CATHODE 2. COMMON DRAIN (OUTPUT) 3. DRAIN, #1 2. CATHODE 2. COMMON DRAIN (OUTPUT) 4. DRAIN, #2 3. CATHODE 3. COMMON DRAIN (OUTPUT) 5. DRAIN, #3 5. CATHODE 4. GATE P-CH 7. DRAIN, #3 6. CATHODE 5. COMMON DRAIN (OUTPUT) 8. DRAIN, #4 7. CATHODE 7. COMMON DRAIN (OUTPUT) 8. DRAIN, #4 8. CATHODE 8. SOURCE P-CH 9. GATE, #4 9. ANODE 9. SOURCE P-CH 10. SOURCE, #4 10. ANODE 10. COMMON DRAIN (OUTPUT) 11. GATE, #3 11. ANODE 11. COMMON DRAIN (OUTPUT) 12. SOURCE, #3 12. ANODE 13. GATE N-CH 14. SOURCE, #2 14. ANODE 14. COMMON DRAIN (OUTPUT) 15. GATE, #1 15. ANODE 16. SOURCE N-CH 16. SOURCE, #1 16. ANODE 16. SOURCE N-CH	STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION	STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3 COLLECTOR, #3 COLLECTOR, #4	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	COLLECTOR, DYE #1 COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 EMITTER, #4 BASE, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1		FOOTPRINT
STYLE 5:										
	PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #3 SOURCE, #3 GATE, #2 SOURCE, #2 GATE, #1	PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE	PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT COMMON DRAIN COMMON DRAIN (OUTPUT COMMON DRAIN COMMON DRAIN COMMON DRAIN (OUTPUT COMMON DRAIN COMMON DRAIN COMMON DRAIN COMMON DRAIN COMMON DRAI	n n n n n n	16X 0.58	<u> </u>	16X 1.12

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-16		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative