NCN2612

6-Differential Channel 1:2 Switch for PCle 2.0 and Display Port 1.1

The NCN2612 is a 6-Channel differential SPDT switch designed to route PCI Express Gen2 and/or DisplayPort 1.1a signals. Due to the ultra-low ON-state capacitance (4.1 pF typ) and resistance (7 Ω typ), these switches have a signal bit rate (BR) of 5 Gbps , ideal for high frequency data signals. This switch pinout is designed to be used in ATX form factor desktop PCs and is available in a space-saving WQFN package. The NCN2612 uses 80% less quiescent power than other comprable PCIe switches.

Features

- V ${ }_{\text {DD }}$ Power Supply from 3 V to 3.6 V
- Low Supply Current $250 \mu \mathrm{~A}$ typ
- 6 Differential Channels 2:1 MUX/DEMUX
- Compatible with Display Port 1.1a \& PCIe 2.0
- Data Rate: Supports 5 Gbps
- Low Ron Resistance: 7Ω typ
- Low Con Capacitance: 4.1 pF
- Space Saving Small WQFN-56 Package
- This is a $\mathrm{Pb}-F r e e$ Device

Typical Applications

- Notebook Computers
- Desktop Computers
- Server/Storage Networks

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping †
NCN2612MTTWG	WQFN56 (Pb-Free)	$2000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NCN2612

Figure 1. NCN2612 Block Diagram

TRUTH TABLE (SEL Control)

Function	SEL
PCI_Express Gen2 Path is Active (Tx, Rx)	L
Digital Video Port is Active (Dx, HPDx, AUX)	H

TRUTH TABLE (Latch Control)

LE	Internal Mux Select
0	Respond to Changes on SEL
1	Latched

NCN2612

Figure 2. Pinout (Top View)

PIN FUNCTION AND DESCRIPTION

Pin	Name	Description
$\begin{gathered} 6,17,22,27, \\ 34,50,55 \end{gathered}$	VDD	DC Supply, $3.3 \mathrm{~V} \pm 10 \%$
$\begin{gathered} 1,11,16,20,21, \\ 28,29,35,48, \\ 49,56 \end{gathered}$	GND	Power Ground.
Exposed Pad	-	The exposed pad on the backside of package is internally connected to Gnd. Externally the exposed pad should also be user-connected to GND.
2	IN_0+	Differential input from GMCH PCIE outputs. IN_0+ makes a differential pair with IN_0-.
3	IN_0-	Differential input from GMCH PCIE outputs. IN_0- makes a differential pair with IN_0+.
4	IN_1+	Differential input from GMCH PCIE outputs. IN_1+ makes a differential pair with IN_1-.
5	IN_1-	Differential input from GMCH PCIE outputs. IN_1- makes a differential pair with IN_1+.
7	IN_2+	Differential input from GMCH PCIE outputs. IN_2+ makes a differential pair with IN_2-.
8	IN_2-	Differential input from GMCH PCIE outputs. IN_2- makes a differential pair with IN_2+.
9	IN_3+	Differential input from GMCH PCIE outputs. IN_3+ makes a differential pair with IN_3-.
10	IN_3-	Differential input from GMCH PCIE outputs. IN_3- makes a differential pair with IN_3+.
12	OUT+	Pass-through output from AUX+ input when SEL = 1. Pass-through output from Rx0+ input when SEL $=0$.
13	OUT-	Pass-through output from AUX- input when SEL = 1. Pass-through output from Rx0-input when SEL $=0$.
14	X+	$\mathrm{X}+$ is an analog pass-through output corresponding to Rx1+.
15	X-	X - is an analog pass-through output corresponding to the Rx 1 - input. The path from $\mathrm{R} \times 1$ - to X - must be matched with the path from $\mathrm{R} \times 1+$ to $\mathrm{X}+\mathrm{X}+$ and X - form a differential pair when the pass-through mux mode is selected.
18	SEL	SEL controls the mux through a flow-through latch. SEL = 0 for PCIE Mode; SEL = 1 for DP Mode
19	LE	The latch gate is controlled by LE.
43, 42	D0+, D0-	Analog pass-through output\#1 corresponding to IN_0+ and IN_0-, when SEL = 1 .
41, 40	D1+, D1-	Analog pass-through output\#1 corresponding to IN_1+ and IN_1-, when SEL = 1 .
39, 38	D2+, D2-	Analog pass-through output\#1 corresponding to IN_2+ and IN_2-, when SEL = 1 .
37, 36	D3+, D3-	Analog pass-through output\#1 corresponding to IN_3+ and IN_3-, when SEL = 1 .
54, 53	Tx0+, Tx0-	Analog pass-through output\#2 corresponding to IN_0+ and IN_0- when SEL $=0$.
52, 51	Tx1+, Tx1-	Analog pass-through output\#2 corresponding to IN_1+ and IN_1- when SEL = 0.
47, 46	Tx2+, Tx2-	Analog pass-through output\#2 corresponding to IN_2+ and IN_2- when SEL $=0$.
45, 44	Tx3+, Tx3-	Analog pass-through output\#2 corresponding to IN_3+ and IN_3- when SEL $=0$.
26	AUX+	Differential input from HDMI/DP connector. AUX+ makes a differential pair with AUX-. AUX+ is passed through to the OUT+ pin when SEL $=1$.
25	AUX-	Differential input from HDMI/DP connector. AUX- makes a differential pair with AUX+. AUX- is passed through to the OUT- pin when SEL $=1$.
24	HPD1	Positive low frequency HPD input handshake protocol signal.
23	HPD2	Negative low frequency HPD input handshake protocol signal (normally not connected).
33	R×0+	Differential input from PCIE connector or device. R×0+ makes a differential pair with R×0-. R×0+ is passed through to the OUT+ pin when SEL $=0$.
32	Rx0-	Differential input from PCIE connector or device. RxO - makes a differential pair with $\mathrm{R} \times 0+$. $\mathrm{R} \times 0$ - is passed through to the OUT- pin when SEL $=0$.
31	Rx1+	Differential input from PCIE connector or device. Rx1+ makes a differential pair with R×1-. R×1+ is passed through to the $\mathrm{X}+$ pin when $\mathrm{SEL}=0$.
30	Rx1-	Differential input from PCIE connector or device. $\mathrm{R} \times 1$ - makes a differential pair with $\mathrm{R} \times 1+$. $\mathrm{R} \times 1$ - is passed through to the $\mathrm{X}-$ pin on the path that matches the $\mathrm{Rx} 1+$ to $\mathrm{X}+$ pin.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltages	V_{DD}	$-0.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.3$	V
Input/Output Voltage Range of the Switch	$\mathrm{V}_{\mathrm{I}} \& \mathrm{~V}_{\mathrm{O}}$	$-0.7 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}+0.3$	V
Selection Pin Voltages	$\mathrm{V}_{\mathrm{SEL}}$	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{DD}}+0.3$	V
Continuous Current Through One Switch Channel	I_{IO}	± 120	mA
Maximum Junction Temperature (Note 1)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction-to-Air (Note 2)	$\mathrm{R}_{\text {日JA }}$	37	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded.
2. This parameter is based on EIA/JEDEC $51-7$ with a 4-layer PCB, $80 \mathrm{~mm} \times 80 \mathrm{~mm}$, two $10 z \mathrm{Cu}$ material internal planes and top planes of 2oz Cu material.

ELECTRICAL CHARACTERISTICS $\left(V_{D D}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ and T_{J} up to $125^{\circ} \mathrm{C}$, unless otherwise noted. All Typical values are at $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
POWER SUPPLY						
$V_{D D}$	Supply Voltage Range		3.0	3.3	3.6	V
IDD	Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{GND}$ or V_{DD}		250	500	$\mu \mathrm{A}$

DATA SWITCH PERFORMANCE (for both PCle and Display Port applications, unless otherwise noted)

$\mathrm{V}_{\text {IN }}$	Data Input/Output Voltage Range		-0.1		V_{DD}	V
R ${ }_{\text {ON }}$	On Resistance (Tx, Rx)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$		7	13	Ω
Ron	On Resistance (Dx,HPDx,AUX)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$		7.5	13	Ω
$\mathrm{R}_{\text {ON(flat) }}$	On Resistance Flatness	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$		0.1	1.24	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching (Tx, Rx)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$			0.35	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching (Dx,HPDx,AUX)	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=40 \mathrm{~mA}$			0.35	Ω
Con	On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch On, Open Output		4.1		pF
CofF	Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$, Switch Off		2.6		pF
Ion	$\begin{aligned} & \text { On Leakage Current (IN_/ } \\ & \text { X_/OUT_) } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{VX}_{-}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, $+1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}$ or V_{TX} or $\bar{V}_{\text {HPD }}$ or V_{RX} or $V_{\text {AUX_ }}=$ ūnconnected	-1		+1	$\mu \mathrm{A}$
IOFF	Off Leakage Current (D/ TX_/ HPD_/RX_/AUX)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & +1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}_{-}} \text {or } \mathrm{V}_{\mathrm{TX}}, \mathrm{~V}_{\mathrm{HPD}} / \mathrm{AUX}_{-} \text {or } \mathrm{V}_{\mathrm{RX}}= \\ & 1.2 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$

CONTROL LOGIC CHARACTERISTICS (SEL and LE pins)

V_{IL}	Off voltage input		0		0.8	V
$\mathrm{~V}_{\mathrm{IH}}$	High voltage input		2		$\mathrm{~V}_{\mathrm{DD}}$	V
I_{IN}	Off voltage input	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{DD}	-1		+1	$\mu \mathrm{~A}$
C_{IN}	High voltage input	$\mathrm{f}=1 \mathrm{MHz}$		1		pF

DYNAMIC CHARACTERISTICS

BR	Signal Data Rate	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=100 \Omega$ differential	5	Gbps
ILoss	Differential Insertion Loss	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=2.7 \mathrm{GHz}$	-4	dB
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=5 \mathrm{GHz}$	-7	
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=7.5 \mathrm{GHz}$	-13	
VISO	Differential Off Isolation	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=100 \mathrm{MHz}$	-41	dB
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=1.35 \mathrm{GHz}$	-19	
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=3 \mathrm{GHz}$	-16	
$\mathrm{X}_{\text {talk }}$	Differential Crosstalk	$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=2.5 \mathrm{GHz}$	-27	dB
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=5 \mathrm{GHz}$	-20	
		$\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~F}=7.5 \mathrm{GHz}$	-10	

SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {SK1 }}$	Bit-to-bit skew within same differential channel	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=4 \mathrm{pF}$		7		ps
$\mathrm{T}_{\text {SK2 }}$	Channel-to-channel skew	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{C}_{\mathrm{L}}=4 \mathrm{pF}$		55		ps

SELECTION PINS SWITCHING CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Symbol	Characteristics	Conditions	Min	Typ	Max	Unit
TSELON	SEL to Switch turn ON time	VDX_A or VDX_B $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, VHPD_X or VAUX_X $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{LE}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}$		8	20	ns
$\mathrm{T}_{\text {SELOFF }}$	SEL to Switch turn OFF time	$\mathrm{VDX} A$ or $\mathrm{VDX} B=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, VHPD_X or VAUX_X $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{LE}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}$		5	10	ns
$\mathrm{T}_{\text {SET }}$	LE setup time SEL to LE	VDX_A or VDX_B $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, VHPD_X or VAUX_X $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{LE}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}$		1		ns
THold	LE hold time LE to SEL	VDX_A or VDX_B $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, VHPD_X or VAUX_X $=+1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $\mathrm{LE}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}$		1		ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Figure 3. Differential Insertion Loss/Differential Return Loss

Differential Off Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}+}-\mathrm{V}_{\mathrm{OUT}-}}{\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}-}}\right)$
Figure 4. Differential Off-Isolation

Figure 5. Differential Crosstalk

Measurements are standardized against shorts at IC terminals.
Differential OFF-Isolation is measured between IN_ and "OFF" D or TX, X and "OFF" HPD or RX1, OUT and "OFF" AUX or RX0 terminal on each switch under Figure 3.
Differential ON-Isolation is measured between IN_ and "ON" D or TX, X and "ON" HPD or RX1, OUT and "ON" AUX or RXO terminal on each switch under Figure 4.
Differential Crosstalk is measured between any two pairs.

| DOCUMENT NUMBER: | 98AON45390E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WQFN56 5x11, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

